भारत सरकार रेल मंत्रालय

लोक सभा 18.12.2024 के अतारांकित प्रश्न सं. 3854 का उत्तर

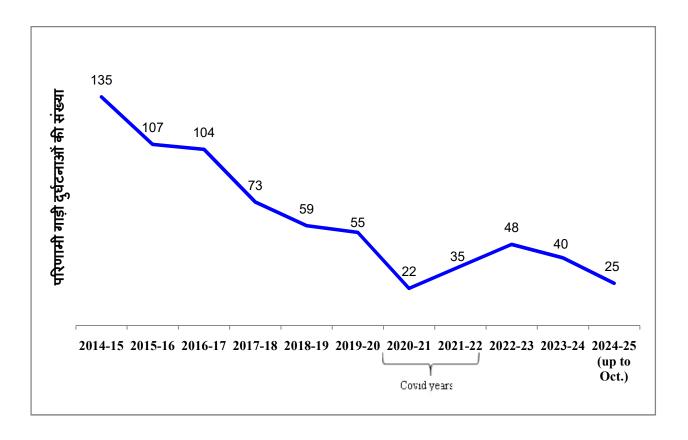
ट्रेन के पटरी से उतरने के कारण

3854. श्रीमती संजना जाटव:

श्री बैन्नी बेहनन:

क्या रेल मंत्री यह बताने की कृपा करेंगे कि:

- (क) क्या सरकार पटरियों के खराब रखरखाव के मुद्दे का समाधान कर रही है जो हाल ही में रेलगाड़ियों के पटरी से उतरने का एक प्रमुख कारण है;
- (ख) यदि हां, तो सुरक्षा उपायों और अवसंरचना रखरखाव में सुधार लाने के लिए सरकार द्वारा प्रस्तावित/की जाने वाली पहलों का ब्यौरा क्या है; और
- (ग) क्या सरकार टक्कर-रोधी 'कवच' प्रणाली स्थापित करने में विफल रही है, इस तथ्य के दृष्टिगत कि अब तक 'कवच' के अंतर्गत केवल 1465 किमी दूरी का मार्ग ही शामिल किया जा रहा है?


उत्तर

रेल, सूचना और प्रसारण एवं इलेक्ट्रोनिकी और सूचना प्रौद्योगिकी मंत्री (श्री अश्विनी वैष्णव)

(क) से (ग): गत वर्षों में किए गए विभिन्न संरक्षा उपायों के परिणामस्वरूप दुर्घटनाओं की संख्या में काफी कमी आई है। परिणामी गाड़ी दुर्घटनाएं 2014-15 में 135 से घटकर 2023-24 में 40 हो गई हैं, जिसे नीचे ग्राफ में दर्शाया गया है। इन दुर्घटनाओं के कारणों में मुख्यतः पटिरयों में खराबी, रेल इंजन/सवारी डिब्बों में खराबी, उपकरण की विफलता, मानवीय चूक आदि शामिल हैं।

यह देखा जा सकता है कि 2004-14 की अविध के दौरान परिणामी गाड़ी दुर्घटनाओं की संख्या 1711 (औसत 171 प्रतिवर्ष) थी, जो वर्ष 2014-24 की अविध के दौरान घटकर 678 (औसतन 68 प्रतिवर्ष) रह गई है जो कि 60% की कमी है।

गाड़ी परिचालन में बेहतर संरक्षा दर्शाने वाला अन्य महत्वपूर्ण सूचकांक दुर्घटना प्रति
मिलियन रेलगाड़ी किलोमीटर (एपीएमटीकेएम) है, जो 2014-15 में 0.11 से घटकर 2023-24
में 0.03 रह गया है, जो उक्त अविध के दौरान लगभग 73% का सुधार दर्शाता है।

भारतीय रेल पर संरक्षा को सर्वोच्च प्राथमिकता दी जाती है। अवसंरचना, संरक्षा और अनुरक्षण पद्धतियों के उन्नयन/सुधार कार्यों हेतु किए गए विभिन्न उपाय निम्नानुसार हैं:-

प्राथमिक रेलपथ नवीकरण करते समय आधुनिक रेलपथ संरचना 60 किग्रा की,
 जिसमें 90 अल्टीमेट टेन्सिल स्ट्रेंथ (यूटीएस) पटरी, प्रीस्ट्रेस्ड कंक्रीट स्लीपर (पीएससी)
 लोचदार बंधन वाले सामान्य/चौड़ी सतह के स्लीपर, पीएससी स्लीपरों पर फैनशेप्ड
 लेआउट टर्नआउट, गर्डर पुलों पर स्टील चैनल/एच-बीम स्लीपर्स का उपयोग किया जाता

- मानवीय त्रुटियों को कम करने के लिए पीक्यूआरएस, टीआरटी, टी-28 आदि जैसी रेलपथ
 मशीनों के उपयोग के माध्यम से रेलपथ बिछाने की गतिविधियों का यांत्रिकीकरण और
 ओएमएस (दोलन निगरानी प्रणाली) और (रेलपथ रिकॉर्डिंग कारों) द्वारा रेलपथ भूमिति
 की निगरानी।
- 130 मीटर/260 मीटर लंबे रेल पैनलों की आपूर्ति को अधिकतम करना, एल्यूमिनो
 थिमिक वेल्डिंग के उपयोग को कम करना और पटिरयों अर्थात फ्लैश बट वेल्डिंग के लिए
 बेहतर वेल्डिंग तकनीक को अपनाना।
- पटिरयों में दोष का पता लगाने और दोषपूर्ण पटिरयों को समय पर हटाने के लिए रेलपथ
 की अल्ट्रासोनिक फ्लॉ डिटेक्शन परीक्षण (यूएसएफडी)।
- युक्तिसंगत अनुरक्षण संबंधी आवश्यकता और इनपुट के इष्टतमीकरण से संबंधित निर्णय लेने के लिए ट्रैक डाटाबेस और डिसीजन सपोर्ट सिस्टम जैसी रेलपथ परिसंपत्तियों की वेब आधारित ऑनलाइन निगरानी प्रणाली को अपनाया गया है।
- बड़ी लाइन मार्गों पर सभी मानवरित समपारों को समाप्त कर दिया गया है और संरक्षा
 बढ़ाने के लिए समपार फाटकों की इंटरलॉकिंग की व्यवस्था की गई है।
- पुलों का नियमित निरीक्षण करना ताकि इन निरीक्षणों के दौरान पुलों की स्थिति के
 आकलन के आधार पर उनकी मरम्मत/पुर्नस्थापन कार्य किया जाता है।
- मानवीय विफलता रोकने के लिए प्वाइंटों और सिगनलों के केंद्रीकृत परिचालन वाले इलेक्ट्रिकल/इलेक्ट्रॉनिक इंटरलॉकिंग प्रणाली की व्यवस्था की गई है।
- विद्युत साधनों के माध्यम से रेलपथ अधिभोग के सत्यापन द्वारा संरक्षा बढ़ाने के लिए
 स्टेशनों के पूर्ण रेलपथ परिपथन की व्यवस्था की गई है।
- सिगनल प्रणाली की संरक्षा से संबंधित मामलों जैसे अनिवार्य साम्यता जांच, परिवर्तन कार्य संबंधी प्रोटोकॉल, पूर्ण हो चुके कार्यों के रेखांकन तैयार करने आदि पर विस्तृत दिशानिर्देश जारी किए गए हैं।

- मास्ट पर रेट्रो-रिफ्लेक्टिव सिग्मा बोर्ड लगाए जाने की व्यवस्था है जो विद्युतीकृत क्षेत्रों
 में सिगनलों से दो ओएचई मास्ट पहले स्थित होता है ताकि कोहरे के मौसम के कारण
 दृश्यता कम होने पर क्रू को आगे के संकेत के बारे में चेतावनी मिल सके।
- कोहरे से प्रभावित क्षेत्रों में लोको पायलटों के लिए जीपीएस आधारित फॉग सेफ्टी डिवाइस (एफएसडी) की व्यवस्था की जाती है जिससे लोको पायलट को आने वाले मुख्य स्थलों यथा सिगनल, रेल फाटकों आदि की दूरी का पता लग जाता है।

भारतीय रेलों पर पिछले कुछ वर्षों में संरक्षा संबंधी व्यय में निम्नानुसार वृद्धि हुई है:-

				2004-14 की
<u></u>	``	2004-05 से	2014-15 से	š
क्र.सं.	मदें	2013-14	2023-24	तुलना में
				2014-24
	रेलपथ अनुरक्षण			
1.	रेलपथ नवीकरण पर व्यय (करोड़ रूपये में)	47,038	1,09,577	2.33 गुना
2.	रेल नवीकरण प्राथमिक (रेलपथ किमी.)	32,260	43,335	1.34 गुना
3.	उच्च-गुणवत्ता की पटरियों का उपयोग	57,450	1,23,717	2.15 गुना
	(60 किग्रा.) (किमी.)			
4.	लंबे रेल पैनल (260मी.) (किमी.)	9,917	68,233	6.88 गुना
5.	पटरियों की यूएसएफडी (अल्ट्रा सोनिक	20,19,630	26,52,291	1.31 गुना
	फ्लॉ डिटेक्शन) जांच (रेलपथ किमी.)			
6.	वेल्डिंग की यूएसएफडी (अल्ट्रा सोनिक	79,43,940	1,73,06,046	2.17 गुना
	फ्लॉ डिटेक्शन) जांच (अदद)			
7.	नए जोड़े गए रेलपथ किमी. (रेलपथ किमी.)	14,985	31,180	2.08 गुना
8.	वेल्ड संबंधी विफलताएं (अदद)	2013-14 में:	2023-24 में:	87% कमी
		3699	481	
9.	पटरियों में दरारें (अदद)	2013-14 में:	2023-24 में:	85% कमी
		2548	383	

10	थिक वेब स्विच (अदद)	शून्य	21,127		
11	रेलपथ मशीन (अदद)	31.03.14	31.03.24	122% वृद्धि	
		तक = 748	तक =1,661		
	समपार फाटकों को समाप्त करना				
1.	बिना चौकीदार वाले समपार फाटकों को समाप्त	31.03.14	31.03.24	100% कमी	
	करना (अदद)	तक: 8948	तक : शून्य		
			(31.01.19		
			तक सभी बंद		
			कर दिए गए)		
2.	चौकीदार वाले समपार फाटकों को समाप्त	1,137	7,075	6.21 गुना	
	करना (अदद)				
3.	रोड ओवर ब्रिज (आरओबी)/ रोड अंडर ब्रिज	4,148	11,945	2.88 गुना	
	(आरयूबी) (अदद)				
4.	समपार समाप्त करने पर व्यय	8,825	41,957	4.75 गुना	
	(एलसी+आरओबी+आरयूबी)				
	पुल पुनर्स्थापन	I	1		
1.	पुल पुनर्स्थापन पर व्यय (करोड़ रुपये में)	3,924	8,255	2.10 गुना	
	सिगनल कार्य	ı	1		
1.	इलेक्ट्रॉनिक इंटरलॉकिंग (स्टेशन)	837	2,964	3.52 गुना	
2.	स्वचालित ब्लॉक सिगनल (किमी.)	1,486	2,497	1.67 गुना	
3.	फॉग पास सेफ्टी डिवाइस (अदद)	31.03.14	31.03.24	219 गुना	
		तकः 90	तकः 19,742		
	चल स्टॉक	1	1		
1.	एलएचबी सवारी डिब्बों का विनिर्माण (अदद)	2,337	36,933	15.80 गुना	
2.	वातानुकूलित डिब्बों में अग्नि और धूमन	0	19,271		
	संसूचक प्रणाली का प्रावधान (डिब्बों की				

	संख्या)			
	पेंट्री और पावर कारों में अग्नि संसूचन एवं			
3.	अग्निशमन प्रणाली का प्रावधान (सवारी डिब्बों	0	2,991	
	की संख्या)			
4.	गैर-वातानुक्लित डिब्बों में अग्नि शामकों का	0	66,840	
	प्रावधान (डिब्बों की संख्या)			

- कवच एक स्वदेश विकसित स्वचालित रेलगाड़ी संरक्षा प्रणाली है जो अत्यधिक प्रौद्योगिकी प्रधान प्रणाली है, जिसे सर्वोच्च स्तर के संरक्षा प्रमाणन (एसआईएल-4) की आवश्यकता होती है।
- यदि लोको पायलट ब्रेक लगाने में विफल रहता है तो कवच स्वचालित ब्रेक लगाकर लोको पायलट को निर्दिष्ट गित सीमा के भीतर रेलगाड़ी चलाने में सहायता करता है और यह खराब मौसम के दौरान रेलगाड़ी को संरक्षित ढंग से चलाने में भी सहायता करता है।
- यात्री गाड़ियों पर पहला फील्ड परीक्षण फरवरी 2016 में शुरू किया गया था। प्राप्त
 अनुभवों और स्वतंत्र संरक्षा निर्धारक (आईएसए) द्वारा प्रणाली के स्वतंत्र संरक्षा
 मूल्यांकन के आधार पर कवच के संस्करण 3.2 की आपूर्ति के लिए 2018-19 में तीन
 फर्मों को मंजूरी दी गई थी।
- कवच को जुलाई 2020 में राष्ट्रीय एटीपी प्रणाली के रूप में अपनाया गया था।
- कवच प्रणाली के कार्यान्वयन में शामिल मुख्य कार्यकलाप निम्नानुसार हैं:
 - क. प्रत्येक स्टेशन, ब्लॉक खंड पर स्टेशन कवच की संस्थापना।
 - ख. पूरे रेलपथ की लंबाई पर आरएफआईडी टैग का संस्थापन।
 - ग. संपूर्ण रेलखंड में दूरसंचार टावरों का संस्थापन।
 - घ. रेलपथ के साथ ऑप्टिकल फाइबर केबल बिछाना।
 - ङ. भारतीय रेल पर परिचालित किए जाने वाले प्रत्येक रेलइंजन पर लोको कवच का प्रावधान।

- दक्षिण मध्य रेलवे में 1465 मार्ग किलोमीटर पर कवच के संस्करण 3.2 के संस्थापन के
 दौरान काफी अनुभव प्राप्त हुए। जिन्हें कार्यान्वित करते हुए आगे सुधार किए
 गए। अंततः दिनांक 16.07.2024 को कवच संस्करण 4.0 विशिष्टियों को आरडीएसओ
 द्वारा अनुमोदित किया गया।
- कवच के संस्करण 4.0 में विभिन्न रेल नेटवर्क के लिए आवश्यक सभी मुख्य विशेषताएं
 शामिल हैं। भारतीय रेल हेतु संरक्षा के संबंध में यह विशिष्ट उपलब्धि है। अल्प अविधि के भीतर, भारतीय रेल द्वारा स्वचालित गाड़ी सुरक्षा प्रणाली को विकसित किया गया,
 परीक्षण किया गया और संस्थापित करना शुरू किया गया।
- कवच के संस्करण 4.0 में प्रमुख सुधारों में अधिक सटीक अवस्थिति, बड़े यार्ड के लिए सिगनल संबंधी बेहतर जानकारी, ओएफसी पर स्टेशन से स्टेशन तक कवच इंटरफेस और मौजूदा इलेक्ट्रॉनिक इंटरलॉकिंग प्रणाली के लिए सीधा इंटरफेस शामिल हैं। इन सुधारों के साथ अब बड़े पैमाने पर इसका संस्थापन शुरू हो गया है।
- नवम्बर 2024 तक भारतीय रेल में कवच प्रणाली में शामिल प्रमुख मदों की प्रगति
 निम्नानुसार है:

क्र.सं.	मदें	प्रगति
i.	ऑप्टिकल फाइबर केबल बिछाना	5133 कि.मी.
ii.	दूरसंचार टावरों का संस्थापन	540 अदद
iii.	स्टेशनों पर कवच का प्रावधान	523 अदद
iv.	रेलइंजनों में कवच का प्रावधान	707 रेलइंजन
v.	ट्रैक साइड उपस्कर का संस्थापन	3434 मार्ग कि.मी.

- कवच प्रणाली के कार्यन्वयन के अगले चरण की योजना निम्नानुसार है:-
 - क. 10,000 रेल इंजनों में इसके संस्थापन हेतु परियोजना को अंतिम रूप दिया गया है।
 कवच को लगाने के लिए 69 लोको शेड तैयार किए गए हैं।
 - ख. लगभग 15000 मार्ग किमी के लिए कवच के रेलपथ साइड कार्यों के लिए बोलियां आमंत्रित की गई हैं। इसमें भारतीय रेल के सभी स्वर्णिम चतुर्भुज (जीक्यू) रेलमार्ग,

स्वर्णिम विकर्ण रेलमार्ग (जीडी), उच्च घनत्व नेटवर्क (एचडीएन) और चिहिनत रेलखंड शामिल हैं।

• वर्तमान में, कवच प्रणाली की आपूर्ति के लिए 3 ओईएम अनुमोदित हैं। क्षमता और कार्यान्वयन के स्तर को बढ़ाने के लिए और अधिक ओईएम के परीक्षण और अनुमोदन विभिन्न चरणों में हैं। सभी संबंधित अधिकारियों को प्रशिक्षण प्रदान करने के लिए भारतीय रेल के केंद्रीकृत प्रशिक्षण संस्थानों में कवच से संबंधित विशेषज्ञता प्रशिक्षण कार्यक्रम आयोजित किए जा रहे हैं। अभी तक 9000 से अधिक तकनीशियनों, ऑपरेटरों और इंजीनियरों को कवच प्रौद्योगिकी से संबंधित प्रशिक्षण प्रदान किया गया है। इन पाठ्यक्रमों को इरिसेट के सहयोग से तैयार किया गया है।
